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Abstract Photosynthetic reaction centers of Blastochloris viri-
dis require two quanta of light to catalyse a two-step reduction
of their secondary ubiquinone QB to ubiquinol. We employed
capacitive potentiometry to follow the voltage changes that were
caused by the accompanying transmembrane proton displace-
ments. At pH 7.5 and 20 �C, the QB-related voltage generation
after the first flash was contributed by a fast, temperature-inde-
pendent component with a time constant of �30 ls and a slower
component of �200 ls with activation energy (Ea) of 50 kJ/mol.
The kinetics after the second flash featured temperature-indepen-
dent components of 5 ls and 200 ls followed by a component of
600 ls with Ea � 60 kJ/mol.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The photosynthetic reaction center (RC) is a pigment–pro-

tein complex that converts the energy of light into electrochem-

ical energy (for reviews see [1–3]). As shown in Fig. 1A, the RC

of the purple a-proteobacterium Blastochloris viridis (former

Rhodopseudomonas viridis), the first membrane protein for

which the X-ray structure has been obtained, is formed by

two membrane subunits (L and M) being flanked by the H

subunit from the cytoplasmic side of the membrane and by a

tetraheme c-type cytochrome from the periplasmic side [4,5].

The excitation of the Bl. viridis RC by a flash of light triggers

a charge separation followed by a picosecond electron transfer

(ET) across the membrane, from the bacteriochlorophyll dimer

P to a bound primary quinone QA (menaquinone-9). While the

oxidized P is reduced by cytochrome c, the electron is trans-

ferred along the membrane plane to a loosely bound secondary

quinone QB (ubiquinone-9, see Fig. 1B), and reduces it to a
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tightly bound semiquinone anion Q��B . The reduction of Q��B
by the next electron – e.g. after the second flash of light – yields

a ubiquinol QBH2 [6–8]. By using capacitive potentiometry,

Dracheva and co-workers followed the electrogenic proton

transfer (PT) that accompanied the reduction of QB to QBH2

in the RCs of Bl. viridis incorporated into proteoliposmes [9].

They have reported a QB-related voltage generation with an

apparent time constant (s) of �400 ls only in response to

the second flash. Further detailed studies of the same reactions

in Rhodobacter sphaeroides have shown, however, that already

the Q��B formation after the first flash is coupled with electro-

genic proton transfer from the surface [10]. As well, the trans-

fers of the second electron and the first proton to Q��B after the

second flash were found to be kinetically coupled in Rb. sph-

aeroides [11]. In Bl. viridis, however, the voltage generation

with s of 400 ls [9] has seemed to be slower than the corre-

sponding ET with s of 50 ls [7,8]. Here we revisited the prob-

lem of voltage generation in Bl. viridis by employing a specific

inhibitor terbutryn to discriminate the reactions at the QB site.
2. Materials and methods

The Bl. viridis cells were grown and their RCs were purified as de-
scribed elsewhere [12]. Proteoliposomes were prepared according to
Ref. [13]. The flash-induced voltage generation was traced by capaci-
tive potentiometry, as described in detail elsewhere [10,14]. Proteolipo-
somes were fused to a nitrocellulose film impregnated with the solution
of 150 mg/ml soybean phosphatidylcholine (type II, Sigma) and 20 mg/
ml ubiquinone-10 in n-decane. The voltage changes were monitored by
a home-made electrometer-amplifier (constructed by N. Spreckelmeier)
and digitalised on a Nicolet Pro-90 oscilloscope (point resolution 1 ls).
The samples were equilibrated in the dark for 20 min before being illu-
minated by series of two consecutive saturating flashes of light with 1 s
interval. A Surelite Nd:Yag laser (532 nm, FWHM 6 ns, Continuum,
USA) was used as an excitation source. The dark adaptation time be-
tween the series was 5–10 min. The sign of the flash-induced voltage
changes indicated that RCs incorporated into liposomes with their
cytochromes pointing outside. In order to separate the QB related volt-
age signal from the total response, the traces obtained in presence of
the QB site inhibitor terbutryn (10 lM) were point-by-point subtracted
from those measured after the first and the second flash, respectively,
without the inhibitor. All traces were normalized to the amplitude of
the terbutryn trace at 2 ls after the flash, and this amplitude, A, was
taken as 100% on estimating the relative amplitudes of difference
traces. The kinetic traces were fitted with exponentials; all points were
considered with equal weight. The Pluk software (kindly provided by
Dr. Y. Kalaidzidis) and Microcal Origin 6.0 package (OriginLab,
USA) were used. The incubation medium contained routinely
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Structure of the photosynthetic RC from Blastochloris viridis. (A) the structure of the Bl. viridis RC is represented schematically showing the
heterotetramer of C, L, M, and H subunits as Ca traces in green, brown, blue, and purple, respectively, plus the 14 cofactors, which have been
projected on to the molecule for better visibility. Also for the sake of clarity, the quinone tails are truncated after the first isoprenoid unit and the
phytyl side chains of the bacteriochlorophyll and bacteriopheophytin molecules have been omitted, as have those atoms of the carotenoid molecule
which were not observed in the electron density and assigned zero occupancy in the PDB entry 2PRC [20]. (B) Comparison of distal (1PRCnew, cyan)
and proximal (2PRC, yellow) ubiquinone-binding sites [20].
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20 mM HEPES, 100 mM KCl, 2 mM potassium ascorbate, 25 lM
N,N,N 0,N 0-tetramethyl-p-phenylendiamine, and methylene blue, the
concentration of which was optimized at each temperature and pH
value to have OB fully oxidized in 30 s [15]. To measure the pH-depen-
dence, we used a pH–buffer mixture of Gly/GlyGly/potassium
phosphate/potassium acetate (20 mM each).
3. Results and discussion

As shown in Fig. 2A, the flash-induced charge separation be-

tween P+ and Q�A led to a kinetically unresolved voltage jump
Fig. 2. Light-induced voltage generation in the RCs of Blastochloris viridis (
second flash, and after the first flash in the presence of QB-antagonist terbutr
the QB site, as normalized to the charge separation component A. (B) Vo
exponentials. The residuals of the fits are shown at the bottom of the plot. (C
or three exponentials. The components of the three exponential fit (5, 20
exponential fit (440 and 35 ls) are shown as dashed lines.
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at <10 ns (see component A in Fig. 2A) followed by a slower

rise. The rise could be due to electrogenic charge displacements

both in the donor and in the acceptor parts of the RC [9].

However, only the voltage generation at the OB site was ex-

pected to be sensitive to the QB antagonist terbutryn [16]. As

shown in Fig. 2A, terbutryn partially suppressed the voltage

rise both after the first and second flash. When the residual

voltage rise in the presence of terbutryn (Fig. 2A) was resolved

on a faster time scale (not documented), it was contributed by

a component of <10 ns of the primary charge separation be-

tween P and QA, a component of �200 ns making �25% of
pH 7.5, T = 20 �C). (A) Voltage traces as measured after the first and
yn. Inset: difference traces ±terbutryn reflecting the voltage changes at
ltage generation after the first flash as approximated by one or two
) voltage generation after the second flash as approximated by one, two
0 and 600 ls) are shown as solid lines. The components of the two
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Table 1
The activation energy (Ea) values calculated for the kinetics compo-
nents of the voltage generation at the QB site after the first flash
(ubisemiquinone formation) and second flash (ubiquinol formation),
respectively, as measured in the range from 7 �C to 28 �C

Kinetics component Very fast Fast Slow

Ea (kJ/mol)
QB ! Q��B – <20 kJ/mol 50 ± 2 kJ/mol
Q��B ! QBH2 <20 kJ/mol <10 kJ/mol 63 ± 5 kJ/mol
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the primary charge separation and attributable to ET from

heme-3 of cytochrome c to P+ (see Fig. 1), as well as a compo-

nent of �2 ls making 10% of the primary charge separation

and owing to ET from heme-4 to heme-3, in good correspon-

dence with data of Dracheva and co-workers who had studied

these kinetic components in more detail [9]. These three steps

of voltage generation are the same after each flash, so that they

are nullified upon the calculation of the ±terbutryn difference

traces (see Section 2 for the procedure). The difference traces,

as obtained for the first and second flash, respectively, are

shown in the inset to Fig. 2A; they reflect the voltage genera-

tion at the QB site upon Q��B and QBH2 formation [10,14]. In

this work we focused on the kinetic analysis of these difference

traces with the aim of understanding the proton transfer at the

QB site of Bl. viridis.

As shown in Fig. 3A, the relative amplitude of the terbutryn-

sensitive voltage generation after the first flash, in response to

the semiquinone Q�B formation, depending on pH, made 2–8%

of the charge separation A (see Section 2). Its kinetics could be

approximated by two components that were well discernible at

t < 20 �C (Figs. 2B and 3B). The faster component (�30 ls at

20 �C, pH 7.5) was virtually temperature-independent (see

Table 1). The slower component (�200 ls at 25 �C) showed

temperature dependence with apparent activation energy (Ea)

of 50 ± 2 kJ/mol.

The relative amplitude of voltage generation after the second

flash, in response to the QBH2 formation, made 12–18% of

charge separation A (see Fig. 3C). The kinetics featured a very

fast component with an apparent s of �5 ls (20 �C, pH 7.5)
Fig. 3. Voltage generation at the QB site as function of pH. First flash: re
component, open squares: 200 ls component. Second flash: relative amplitude
200 ls component, open squares: 600 ls component. The total amplitudes o
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and slower component(s) with s of �440 ls if fitted by a single

exponential function. The double exponential fit of the slower

component allowed better approximation with s values of 200

and 600 ls at neutral pH and 25 �C (Figs. 2C and 3D). The 5

and 200 ls components were virtually temperature-indepen-

dent (see Table 1). The slowest 600 ls component showed tem-

perature dependence with Ea of 63 ± 5 kJ/mol.

Here we describe several new kinetic components of flash-in-

duced voltage generation at the QB site of the Bl. viridis RCs.

These novel components were apparently overlooked in the

earlier pioneering study [9] because the difference between

the voltage traces in response to the second and first flash

was taken as a measure of QB-related voltage generation – un-

der the apparently incorrect assumption of its absence after the

first flash (cf. with Figs. 2A,B, and 3A,B).

The rates, relative amplitudes, as well as the pH- and tem-

perature dependence of the voltage generation after the first

flash (see Figs. 2B and 3A,C) resemble those reported for

Rb. sphaeroides [10,14,17]. In Rb. sphaeroides, two kinetic
lative amplitudes (A) and time constants (B). Open circles: the 30 ls
s (C) and time constants (D). Open stars: 5 ls component, open circles:
f the respective voltage changes are shown as filled stars.

nthetic reaction center ..., FEBS Lett. (2007), doi:10.1016/j.febslet.2007.12.010



4 M.A. Kozlova et al. / FEBS Letters xxx (2007) xxx–xxx

ARTICLE IN PRESS
components were discernable, namely a fast component with s
of �80 ls and Ea of 610 kJ/mol and a slow component with s
of �500 ls at 10 �C and Ea of �60–70 kJ/mol [14]. The Ea of

the slow component was too large for PT proper and indicated

a kinetic limitation by conformational change in a fraction of

RCs. It was hypothesized that in some RCs QB may dwell in a

remote non-functional site that is separated by a high activa-

tion barrier from the closer, catalytic position [14]. The low-

temperature X-ray structures of the Rb. sphaeroides RC have

indeed revealed two QB states, namely a remote ‘‘distal’’ posi-

tion and a ‘‘proximal’’ one with QB being 5 Å closer to QA [18].

It has been argued that in the RCs with QB in a catalytic prox-

imal position the proton redistribution towards Q�B proceeds

with s of �100 ls and Ea < 10 kJ/mol whereas in the RCs with

QB in a distal ‘‘stand-by’’ site, the formation of Q�B and the

coupled proton displacements are limited by slow relocation

of QB into the catalytic position [3,14,19]. Concurrently with

the work on the Rb. sphaeroides RC, but using a different

experimental strategy, distal and proximal positions (Fig. 1B)

for the native QB species were found in the Bl. viridis RC

[20]. Taking into account that the transfer of the first electron

to QB takes �20 ls in Bl. viridis [7], i.e. is somewhat faster than

the components of voltage generation revealed here (cf. with

Figs. 2B and 3B), the latter can be attributed, by analogy with

Rb. sphaeroides, to the unimpeded and conformationally con-

strained proton redistribution upon the Q��B stabilization in Bl.

viridis, respectively.

In Bl. viridis, the voltage generation in response to the sec-

ond flash could be described by three kinetic components

(see Figs. 2C and 3C, D). In the case of Rb. sphaeroides, the

respective kinetics could be fitted by two kinetic components,

namely a faster, almost temperature-independent one with s
of �100 ls and a slower component with s of �500 ls at

20 �C and Ea of about 60 kJ/mol; these components were

attributed to the first and second protonation of QB, upon

the Q��A Q��B ! QAQBH� and QAQBH� fi QAQBH2 transitions,

respectively [19,21,22]. The two faster components that were

observed in Bl. viridis (with s values of 5 and 200 ls) were

weakly temperature dependent, whereas the slowest one dis-

played an Ea of about 50 kJ/mol (see Table 1). From the rela-

tive amplitudes of the components (see Fig. 3C) and by

analogy with Rb. sphaeroides, the two faster components could

be attributed to the first protonation of Q��B , while the slower

one apparently reflects the second protonation.

Unlike the neutral QB, which can attain several positions in

the QB site [20], the Q��B anion radical is attracted by the pos-

itively charged non-heme iron [23] and is expected, by analogy

with the binding of a semiquinone-mimetic stigmatellin [20,24]

and also by analogy with Rb. sphaeroides [14,18], to occupy a

defined position in the pocket [20]. Therefore the heterogeneity

of the voltage generation found upon the Q��A Q��B ! QAQBH�

transition in Bl. viridis RCs is rather unexpected. It is notewor-

thy that the 5 ls component has never been observed with Rb.

sphaeroides chromatophores either in the earlier works

[10,21,22] or in the same high-resolution set-up [3] that was

here used to investigate the RC of Bl. viridis. Another striking

finding is that the 5 ls component of voltage generation is

apparently faster than the reported time constant of ET from

Q��A to Q��B after the second flash (�50 ls [7,8]). One possibility

is that the 5 ls component reflects a terbutryn-sensitive charge

displacement at the QB-site in response to Q��A formation. It

has been shown that the formation of Q��A after the first flash
Please cite this article in press as: Kozlova, M.A. et al., Proton transfer in the photosy
triggers proton binding [25] and conformational changes [26]

at the QB site of Rb. sphaeroides. Electrostatic calculations

do not rule out that in Bl. viridis already the formation of

Q��A can cause a prompt, electrogenic proton redistribution at

the QB site [27]. Alternatively, the 5 ls component might reflect

the heterogeneity in the kinetics of the second electron transfer

in Bl. viridis. Unlike Rb. sphaeroides, the RCs of Bl. viridis have

shown heterogeneity of their Q��A states, as inferred from the

Q��A Pþ ! QAP backreaction kinetics [28,29]. The heterogeneity

was explained by the existence of two fractions of RCs becom-

ing differently protonated in response to Q��A formation, and,

accordingly, having different redox potentials of their

QA=Q��A redox pairs [29]. According to Marcus theory [30],

the ET from Q��A to QB has to be faster in the RCs with lower

redox potential of the QA=Q��A pair. This low-potential fraction

made about 20% in Bl. viridis RC preparation at neutral pH

and increased upon alkalisation [28,29]. Hence, one can expect

two kinetic components for the Q��A Q��B ! QAQBH� transition,

with a faster component contributing 20% at neutral pH and

increasing at higher pH values. These expectations, in princi-

ple, corroborate the pH-dependence of the relative amplitudes

of the 5 ls and 200 ls components (see Fig. 3C).

In conclusion, the voltage generation at the QB site shows

fundamental similarity in Bl. viridis and Rb. sphaeroides. At

the same time, the kinetics of the first Q��B protonation after

the second flash contain a novel minor 5 ls component that

has no counterpart in Rb. sphaeroides. Further studies of

site-specific mutants are needed to clarify the nature of this fast

component.
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