Reduction and protonation of the secondary quinone acceptor of *Rhodobacter sphaeroides* photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg→Ile substitution at sites 207 and 217 in the L-subunit

Dmitry A. Cherepanov a, Sergei I. Bibikov b,c, Marina V. Bibikova d, Dmitry A. Bloch b, Lel A. Drachev b, Oksana A. Gopta b, Dieter Oesterhelt c, Alexey Y. Semenov b, Armen Y. Mulkidjanian b,e,*

a Institute of Electrochemistry, Russian Academy of Sciences, Leninskii prosp. 31, 117071 Moscow, Russia
b A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
c Max-Planck-Institute für Biochemie, D-81152 Martinsried bei München, Germany
d N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 117809 Moscow, Russia
e Abteilung Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany

Received 23 April 1999; received in revised form 5 January 2000; accepted 21 February 2000

Abstract

After the light-induced charge separation in the photosynthetic reaction center (RC) of *Rhodobacter sphaeroides*, the electron reaches, via the tightly bound ubiquinone Q_A, the loosely bound ubiquinone Q_B. After two subsequent flashes of light, Q_B is reduced to ubiquinol Q_BH_2, with a semiquinone anion Q_B^3 formed as an intermediate after the first flash. We studied Q_BH_2 formation in chromatophores from *Rb. sphaeroides* mutants that carried Arg→Ile substitution at sites 207 and 217 in the L-subunit. While Arg-L207 is 17 Å away from Q_B, with a semiquinone anion Q_B^3 formed as an intermediate after the first flash, Q_BH_2 formation in chromatophores from *Rb. sphaeroides* mutants that carried Arg→Ile substitution at sites 207 and 217 in the L-subunit. While Arg-L207 is 17 Å away from Q_B, Arg-L217 is closer (9 Å) and contacts the Q_B-binding pocket.

From the pH dependence of the charge recombination in the RC after the first flash, we estimated ΔG_{AB}, the free energy difference between the Q_A^3 Q_B and Q_A Q_B^3 redox pairs, and pK_{212}, the apparent pK value of Glu-L212, a residue that is only 4 Å away from Q_B. As expected, the replacement of positively charged arginines by neutral isoleucines destabilized the Q_B^3 state in the L217RI mutant to a larger extent than in the L207RI one. Also as expected, pK_{212} increased by ~0.4 pH units in the L207RI mutant. The value of pK_{212} in the L217RI mutant decreased by 0.3 pH units, contrary to expectations. The rate of the Q_A^3 Q_B → Q_A Q_BH_2 transition upon the second flash, as monitored by electrometry via the accompanying changes in the

Abbreviations: BChl, bacteriochlorophyll; ΔG_{AB}, free energy gap between Q_A/Q_A^3 and Q_B/Q_B^3 redox pairs; δΔG_{AB}, change in the free energy gap caused by the amino acid substitutions; δδ, change in the local electrostatic potential; Δψ, transmembrane electric potential; ε_{eff}, effective dielectric permittivity (dielectric constant); E_a, activation energy; λ, reorganization energy; MB, methylene blue; pH^*, local proton activity; pK_{212}, pK value of Glu-L212 residue; δpK_{212}, change in the pK_{212} value; P, P_870, primary electron donor of RC; Q, ubiquinone; QH_2, ubiquinol; Q_A, Q_A^3, oxidized and single reduced (semiquinone) forms of the primary quinone acceptor, respectively; Q_B, Q_B^3, Q_BH_2, oxidized form, semiquinone anion, semiquinone radical, doubly reduced non-protonated form, doubly reduced partly protonated form, and doubly reduced and doubly protonated (quinol) forms of the secondary quinone acceptor, respectively; r_{AB}, distance between Q_A and Q_B; RC, photosynthetic reaction center; TMPD, N,N,N',N'-tetramethyl-p-phenylenediamine; WT, wild-type

* Corresponding author. Fax: +49-541-969-2870; E-mail: mulkidjianian@biologie.uni-osnabrueck.de

0005-2728/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0005-2728(00)00110-9
membrane potential, was two times faster in the L207RI mutant than in the wild-type, but remained essentially unchanged in the L217RI mutant. To rationalize these findings, we developed and analyzed a kinetic model of the $Q_AQ_B \rightarrow Q_AQ_BH_2$ transition. The model properly described the available experimental data and provided a set of quantitative kinetic and thermodynamic parameters of the Q_B turnover. The non-electrostatic, ‘chemical’ affinity of the Q_B site to protons proved to be as important for the attracting protons from the bulk, as the appropriate electrostatic potential. The mutation-caused changes in the chemical proton affinity could be estimated from the difference between the experimentally established pK_{212} shifts and the expected changes in the electrostatic potential at Glu-L212, calculable from the X-ray structure of the RC. Based on functional studies, structural data and kinetic modeling, we suggest a mechanistic scheme of the Q_B turnover. The detachment of the formed ubiquinol from its proximal position next to Glu-L212 is considered as the rate-limiting step of the reaction cycle. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Protein electrostatics; Photosynthetic reaction center; Ubiquinone; Electron transfer; Proton transfer; Electrogenesis; Membrane potential; *Rhodopseudomonas viridis; Rhodobacter sphaeroides*

1. Introduction

The photosynthetic reaction center (RC) of purple photosynthetic bacteria is a membrane pigment–protein complex that utilizes light energy to reduce a ubiquinone molecule (Q) to ubiquinol (QH$_2$). The RC is formed by two integral membrane subunits L and M which are capped by the H subunit from the cytoplasmic side of the membrane (see refs. [1,2] for the most recent crystal structures of *Rhodobacter sphaeroides* RC and ref. [3] for the general survey of the RC structures). Photoexcitation of RC causes a picosecond transmembrane electron transfer from the primary donor P (a bacteriochlorophyll dimer located between L and M subunits, closer to the periplasmic side of the chromatophore membrane), via bacterio-phyophytin, to the quinone acceptors located at the cytoplasmic side of the RC (see ref. [4] for review). First the electron reaches, in \sim200 ps, the primary quinone acceptor Q_A that is tightly bound to the M subunit. Then the electron moves in \sim100 μs to the loosely bound secondary quinone acceptor Q_B located symmetrically at the L subunit. Fig. 1A shows Q_B surrounded by some amino acid residues as inferred from the X-ray diffraction structure [1].

Fig. 1. Arrangement of the Q_B site as inferred from the X-ray diffraction structure [1]. (A) Positions of the mutated and other relevant amino acid residues relative to Q_B and to the non-heme iron are shown. Color code: oxygen, red; nitrogen, blue; hydrogen, where shown, yellow; iron, violet. (B) View on the Q_B binding pocket from the intra-membrane flank of RC. The H subunit (located in the background) is not shown to emphasize the tunneling cavern in the structure. The surface was built by the Connolly algorithm [79] using the InsightII program (Molecular Simulations Inc.).
residues and water molecules (as obtained from the X-ray structure of the Rb. sphaeroides RC resolved at 2.2 Å [1]). The internal shape of the Q_B binding cavity is shown in Fig. 1B. The Q_B site looks like an opened cylinder or a tube where the ubiquinone molecule can move and even twist, pushing aside the loosely bound water molecules. The tube opens into a water-filled lens on the interface between the LM heterodimer and the H subunit. The direct connection between the water-filled lens and the Q_B-binding cavity allows both the effective intraprotein proton conduction and the fast exchange of ubiquinone with the membrane pool (see refs. [5–9] for reviews on Q_B reduction and protonation in Rb. sphaeroides).

The delivery of the first electron to Q_B causes the formation of a kinetically stable semiquinone anion radical Q_B^− (hereafter denoted as Q_B^− for simplicity):

\[
\begin{align*}
Q_AQ_B & \xrightarrow{\text{1st } hv} Q_A^\cdot Q_B^\cdot \\
& \xrightarrow{l_+} Q_AQ_B^+ \\
& \xrightarrow{l_-} Q_AQ_B^-
\end{align*}
\]

Scheme I.

While Q_B can be easily exchanged for a ubiquinone from the membrane pool, Q_B^− is tightly bound [10,11]. Although the semiquinone itself stays deprotonated, its negative charge shifts the pK values of some amino acid residues in the vicinity and causes proton binding from the bulk both in the case of the isolated RC [12–14] and chromatophores [15]. The reaction (Scheme I) could be monitored either via electron transfer (see e.g. ref. [16]) or by monitoring the changes in the transmembrane electric potential (Δψ) caused by proton transfer from the surface into the Q_B site [15,17–21].

The delivery of the second electron leads to the ubiquinol formation that is coupled with proton uptake [12,13,15,22,23]:

\[
\begin{align*}
Q_AQ_B & \xrightarrow{2nd hv} Q_A^\cdot Q_B^\cdot + 2H^+ \\
& \xrightarrow{m_+} Q_AQ_BH_2 \\
& \xrightarrow{m_-} Q_A + QH_2
\end{align*}
\]

Scheme II.

This reaction could be traced by monitoring the electron transfer [15,24,25] or by measuring the electrogenesis of proton transfer through the membrane

[15,17,18,21,26–28]. At room temperature (+25°C), the kinetics of the respective electrogenic reaction, B2, seem to be mono-exponential and could be characterized by a single rate constant, k_{B2}. Below +15°C, the B2 kinetics split into B2_{fast} and B2_{slow} components of similar amplitudes at neutral pH [28]. These two components, with differing activation energies E_a, have been attributed to the transfer of the first (E_a ≤ 10 kJ/mol) and of the second (E_a ≈ 60 kJ/mol) proton to Q_B^− [28].

In this work, we characterized two mutants of Rb. sphaeroides with the positively charged residues around Q_B replaced by the neutral ones (Arg-L207→Ile and Arg-L217→Ile). We attempted to complement the extensive studies of the negatively charged amino acid residues around Q_B (see [7–9] for recent reviews). As expected, the replacement of the positively charged arginines by isoleucines decreased the stability of the Q_AQ_B^− state in both mutants. At the same time, more complex perturbations in the electron/proton coupling during the Q_AQ_B^− → Q_AQ_BH_2 transition could not be attributed to the electrostatic impact alone. Based on experimental data and kinetic modeling, we concluded that the non-electrostatic, ‘chemical’ affinity of the Q_B site to protons is as important for their trapping from the bulk, as the electrostatic proton affinity that is due to the presence of a surplus negative charge. We suggest an approach that allows to estimate separately the impact of mutations on two types of proton affinity.

2. Materials and methods

2.1. Construction of mutants

Site-specific mutagenesis of the L subunit gene of the Rb. sphaeroides RC using the gapped-duplex method [29,30] was used to alter two basic amino acid residues located in the vicinity of the Q_B. Codons for arginine at positions 207 and 217 were each changed to those for isoleucine (L207RI and L217RI). Specifically, plasmid pMapLM1 of the pMac system [31], carrying the full and functionally active pufQBALMX operon and ampicillin resistance, was subjected to AatII and PvuII digestion to create a gap of 150 bp in the region of the L-sub-
unit gene. This plasmid was recombined with its single-stranded copy pMcpLM1 carrying chloramphenicol resistance. After addition of the appropriate oligonucleotide, the gap was filled-in with the Klenow fragment of DNA polymerase. The resulting plasmid was amplified in a mutS strain, and the mutated copy of the plasmid was selected after transformation of Escherichia coli MV1190 on ampicillin plates and checked by sequencing using an ABI sequencer. The mutant copy of the pufQBALMX operon was moved to a mobilizable, broad host range plasmid pRK404, carrying tetracycline resistance [32,33] which was used to complement in trans the deletion strain Rh. sphaeroides Ga (Green neurosporene-accumulating variant) pufv21/3 (pufvLMX::kan (KmR)). The chromosomal copies of genes pfuQBA were still active in this strain. The strain pfuv21/3, carrying the wild-type pufQBALMX operon in pRK404, was used as a control in most experiments and was designated as ‘wild-type’ (WT) in this paper. To avoid possible accumulation of revertants, mutant cells were routinely screened by sample sequencing.

2.2. Bacterial growth and preparation of chromatophores

Rh. sphaeroides mutants were grown semi-aerobically at 30°C in the dark of Sistrom’s minimal medium supplemented with 0.2% (w/v) casamino acids, 25 μg/ml kanamycin and 2 μg/ml tetracycline, as described previously [34]. Cells were grown to late stationary phase in 1-l Erlenmeyer flasks, filled to 400 ml. Chromatophores were isolated by an ultrasonic disruption procedure (to decrease the cytochrome c2 content) washed by ultracentrifugation and stored frozen in 150 mM sucrose at −20°C until used [28].

2.3. Photoexcitation source

Chromatophore samples were illuminated by single light pulses from a Q-switched neodymium YAG laser combined with a second harmonic generator (YG-481, Quantel, France, 532 nm, pulse half-width, 15 ns; 150 mJ/cm2 per flash).

2.4. Differential spectroscopy

The kinetics of the laser flash-induced optical changes of P were monitored at 603 nm using a home-built single-beam kinetic spectrophotometer with two monochromators interfaced to a DL-1080 (Datalab, UK) transient recorder and IBM-PC 486 computer. The pre-amplified transient signals were filtered through a low-frequency bandpass filter (τ=10 μs), stored and averaged (usually, 10–20 curves) at 30-s dark intervals. The intensity of the permanent monitoring light beam was adjusted using the glass optical filters to keep P 70–80% reduced. All measurements were carried out aerobically in 1×1×3 cm quartz cuvettes.

2.5. Electrometric measurements

The fast kinetics of the laser flash-induced membrane potential (Δψ) generation in chromatophores were investigated by a direct electrometric technique [35]. The 0.2-μm-thick nitrocellulose film, that separated two Teflon compartments, was impregnated with a solution of soybean phosphatidylcholine (type II-S, Sigma, USA, 150 mg/ml) and coenzyme Q10 (Sigma, USA, 20 mg/ml) in n-decane. Chromatophores (80 μM bacteriochlorophyll a) were incubated in one of the compartments with 25 mM CaCl2 for 3 h at 23°C, then the suspension was replaced by a buffer solution free of CaCl2 and chromatophores. The voltage changes were monitored using Ag/AgCl electrodes, amplified by a high input impedance (1011 Ω) amplifier (3554BM, Burr-Brown, USA), and digitized by a DL1080 oscilloscope (Datalab, UK). The dwell time of the set-up was 100 ns. Chromatophores were pre-adapted in the complete darkness for 10–15 min before the applying series of light pulses, to achieve a full oxidation of the quinone acceptor complex by redox mediator methylene blue (MB). The concentration of the latter was determined experimentally for each pH region to achieve a full dark adaptation (see [10] for discussion of factors influencing the life time of Q3B). Then, a series of two flashes were applied with a 0.5-s dark interval between the flashes. To analyze the electrogenic phases attributed to the protonation of Q8, the photoelectric responses obtained in the presence of a Q8 site inhibitor stigmatellin were point-by-point subtracted from the first and second flash-induced photoelectric responses obtained without the inhibitor.
2.6. Calculations

The kinetic traces were analyzed by using the GIM software package developed by A.L. Drachev (Dr. Achev Development, USA). The DISCRETE algorithm [36] was used for the multi-exponential analysis of the optical and electrometric data. The kinetic models were analyzed numerically using the non-linear, non-gradient searching procedure known as Powell’s algorithm [37].

3. Results

3.1. Charge recombination between Q₈ and P⁺

In the absence of secondary electron donors, the charge separation between P and quinone acceptors is followed by a charge recombination. At neutral pH, the recombination rate is slower when electron returns to P⁺ from Q₈ (τ~ 5 s in chromatophores), than when it returns from Q₈ (τ~ 100 ms; the latter reaction is observed when the Q₈ site is blocked by inhibitor). Unlike those in the WT, the kinetics of charge recombination in the L207RI and L217RI mutants contained a fast component with a relative amplitude of < 10% and with a characteristic time of P⁺Q₈ recombination (Fig. 2). This might be caused by the weaker ubiquinone binding to the Q₈ site in the mutants (see Section 4).

From the rate constant of electron return from Q₈ and Q₈, k.AP and k.BP, the equilibrium constant L of the electron distribution between Q₈ and Q₈ (see Scheme I) can be found by using the equation [38]:

\[L = \frac{k_{AP}}{k_{BP}} - 1 \]

(1)

The respective free energy difference could be calculated as

\[\Delta G_{AB} = -(2.3RT) \times \lg L. \]

(2)

The pH dependence of \(\Delta G_{AB} \) in the WT and mutant chromatophores is shown in the left panel of Fig. 3 (the slow component of \(P^+Q_B^- \) recombination was used to calculate \(\Delta G_{AB} \) in the case of mutants). The free energy gap between Q₈Q₈ and Q₈Q₈ states was smaller in both mutants than in the WT. The difference indicates that the Q₈Q₈ state was somewhat destabilized by the disappearance of the effective positive charges of Arg-L207 and Arg-L217.

The \(P^+Q_B^- \rightarrow PQ_B^- \) recombination accelerated gradually on alkalinization, (see Fig. 2), whereas the rate of the \(P^+Q_A^- \rightarrow PQ_A^- \) recombination, as measured in

![Fig. 2. Kinetics of the charge recombination reaction (P⁺Q₈ → PQ₈) measured at 603 nm in the WT (left panel), L207RI (middle panel) and L217RI (right panel) chromatophores at various pH values, Conditions: 20 mM buffer (HEPES, CHES, or potassium phosphate), 50 mM KCl, 3 μM myxothiazole, 2 μM antimycin, 20 μg/ml gramicidin D. The concentration of BCHl in the samples was 18 μM.](image-url)
the presence of a Q\textsubscript{B}-antagonist stigmatellin, remained approximately constant (not shown). Correspondingly, the free energy gap between the Q\textsubscript{A}Q\textsubscript{B} and Q\textsubscript{A}Q\textsubscript{B} states, v_{G}^{AB}, decreased at higher pH, as it is shown in the left panel of Fig. 3. The pH dependence of v_{G}^{AB} was weak at $6 < pH < 8$. Several amino acid residues that interact weakly with Q\textsubscript{A} and/or Q\textsubscript{B} have been proposed to account for this segment of pH dependence [5,6,13,14]). On further alkalinization, the pH dependence of v_{G}^{AB} becomes stronger because of the destabilization of the Q\textsubscript{A}Q\textsubscript{B} state by the negative charge that appears at Glu-L212 at pH above its apparent pK_{212} of about 10.0. The absence of such a Q\textsubscript{B} destabilization in the L212EQ mutant [39,40] indicates that other amino acid residues contribute weakly in this pH range. Hence, we used the following phenomenological equation to describe the pH dependence of ΔG_{AB}:

$$\Delta G_{AB} = \Delta G_{0}^{AB} - 2.3RT\log \frac{1 + 10^{pK_{212} - \Delta pK_{212}}}{1 + 10^{pH - pK_{212}}} - \chi \cdot 2.3RT(pH - pK),$$

where ΔG_{0}^{AB} is the free energy difference at the isoelectric point (pH\textsubscript{i}) that was estimated as 5.7 for chromatophores of \textit{Rh. sphaeroides} [41]; pK_{212} is pK of Glu-L212 when Q\textsubscript{B} is neutral; ΔpK_{212} is the shift of pK_{212} in response to the negative charge of Q\textsubscript{B}; χ is an empirical coefficient that accounts for the weak, linear pH dependence of ΔG_{AB} at neutral pH. An estimate of ≈ 2.5 pH units from ref. [40] was used for ΔpK_{212}. It was impossible to determine ΔpK_{212} from our data because the pK value of Glu-L212 in

![Fig. 3. pH dependence of the RC operation in chromatophores of \textit{Rh. sphaeroides}: Left panel: pH dependence of the free energy difference ΔG_{AB} between Q\textsubscript{A}Q\textsubscript{A} and Q\textsubscript{B}Q\textsubscript{B} in WT (■); L207R1 (○); L217R1 (△). Conditions as in Fig. 2, except 20 mM of one of the following buffers were present (MOPS, HEPES, Tris-HCl, CHES, CAPS, and potassium phosphate). The experimental points were fitted by using the set of parameters listed in Table 1 as is described in the text. Solid line, WT; dashed line, L207R1; dotted line, L217R1. Middle panel: pH dependence of the rate constant of B2 (k_{B2}) in WT (■); L207R1 (○); L217R1 (△). See the caption to Fig. 5 for conditions. Right panel: pH dependence of the rate constant k_{B2} in the WT chromatophores at +25°C (■), and of the rate constants of the B2 kinetic subcomponents $k_{B2}\text{fast}$ (○) and $k_{B2}\text{slow}$ (△) at +10°C (data re-plotted from Fig. 3D in [28]). The theoretical curves in the middle and right panels were obtained by the global fit of the three data sets using the parameters listed in Table 1 (see the text for details).

<table>
<thead>
<tr>
<th>Strain</th>
<th>L_{0}</th>
<th>ΔG_{0}^{AB} (meV)</th>
<th>ΔG_{AB} (meV)</th>
<th>pK_{212}</th>
<th>δpK_{212}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>54</td>
<td>-102.2</td>
<td>0</td>
<td>10.74</td>
<td>0</td>
</tr>
<tr>
<td>L207RI</td>
<td>40</td>
<td>-94.7</td>
<td>7.5</td>
<td>11.17</td>
<td>0.43</td>
</tr>
<tr>
<td>L217RI</td>
<td>24</td>
<td>-81.7</td>
<td>20.5</td>
<td>10.44</td>
<td>-0.30</td>
</tr>
</tbody>
</table>

L_{0}, equilibrium constant L at the isoelectric point (pH = 5.7).
the presence of Q_B was outside of the experimentally accessible pH range.

We used Eq. 3 to fit the experimental points, asking for the values of $\Delta G'_{AB}$ and pK_{212} in the WT and the mutants. For simplicity, the slope coefficient χ was assumed to be the same for all three curves. The fit yielded a value of 0.093 for χ; the obtained values of $\Delta G'_{AB}$ and pK_{212} are presented in Table 1. The calculated theoretical curves are plotted in the left panel of Fig. 3.

Fig. 3 (left panel) and Table 1 show that the L217RI substitution caused a greater change in $\Delta G'_{AB}$ than the L207RI one. This is in agreement with the structure that shows Arg-L217 closer to Q_B than Arg-L207 (Fig. 1A). Also in a rough accordence with the electrostatic theory, the deletion of a positive charge increased the pK_{212} value of Glu-L212 by 0.4 pH units in the L207RI mutant (see Table 1). However, in the L217RI mutant pK_{212} decreased by 0.3 pH units, contrary to the straightforward expectations based on electrostatics (see Section 4 for the further quantitative analysis).

3.2. Electrogenic reactions at the Q_B site

Single-flash illumination of dark-adapted chromatophores of $Rb. sphaeroides$ caused $\Delta \psi$ generation that was monitored electrometrically (Fig. 4). The initial fast $\Delta \psi$ formation (A1 and A2 components after the first and second flashes, respectively) was due to the transmembrane charge separation between P and Q_A with a characteristic time $\tau<100$ ns (see [42,43]). The charge separation was followed by the slower electrogenic component(s) ($\tau\sim100 \mu$s at neutral pH) both after the first and the second flashes (Fig. 4A). To discriminate the charge displacements coupled with the Q_B reduction, we applied stigmatel-
lin, a Q_B antagonist [44]. It suppressed the slower components of the electrogenesis (see Fig. 4A).

3.2.1. The electrogenic reaction at the Q_B site coupled with the Q_B⁻ formation after the first flash

The electrogenic reaction at the Q_B site coupled with the Q_B⁻ formation after the first flash was discriminated as the difference between the first flash-induced photoelectric traces obtained in the absence and in the presence of stigmatellin, as established elsewhere [17]. The resulting component, B₁, is likely to be caused by the electrogenic redistribution of charges in response to the Q_B⁻ formation [17-19]. In the WT chromatophores, the extent of B₁ increased at alkaline pH, reaching 5-7% of A₁ at pH 9.5 (Fig. 5A). Concomitantly, the rate of B₁ slowed down (Fig. 5B). Both effects are believed to reflect the protonation of Glu-L212 in response to Q_B⁻ formation at pH > p_K212 [19,20,45]. As shown in Fig. 5A,B, in the L217RI mutant, the rate and the relative amplitude of B₁ depended on pH, similarly to those in the WT chromatophores. With alkalization, both the increase of the relative amplitude and the slowing of the rate were observed. In the L207RI mutant, the pattern was different: neither the increase in the relative amplitude of B₁, nor the decrease of its rate were detectable up to pH 10.0.

3.2.2. The electrogenic reaction coupled with the Q_BH₂ formation after the second flash

The electrogenic reaction coupled with the Q_BH₂ formation after the second flash was discriminated as a difference of photoelectric responses induced by the second flash in the absence of the inhibitor and by the first flash in the presence of the latter (see Fig. 4B,C). The resulting electrogenic component, B₂, reflects the transfer of two protons to Q_B [15,17,26-28]. It is noteworthy that the amplitude of the initial charge separation after the second flash (component A₂) was always smaller than those of the component A₁ after the first one (by ~2.5% at pH 7 in the WT). The difference was due to the presence of a small fraction of the RCs where the Q_AQ_B state was thermally populated prior to the second flash. No stable charge separation was possible in this RC fraction. In the mutant chromatophores, the fraction was even larger, because the binding of Q_B seemed to be impaired in some of the RC (see Section 4). Hence, the voltage transients measured after the second flash were routinely multiplied by the factor A₁/A₂ to normalize them to the first flash-induced kinetic traces (as was done, e.g. in Fig. 3).

1 Similar results were obtained with atrazine and terbutryn, tested at random.

Fig. 5. pH dependence of the relative amplitude (A,C) and of the observed rate constant (B) of the electrogenic reaction at the Q_B site upon the first (A,B) and the second (C) flashes. The amplitudes and the first-order rate constants (k_{B1} and k_{B2}) of the electrogenic components B₁ and B₂ were obtained from the mono-exponential fits of data. ■, WT; ○, L207RI; ▲, L217RI. Conditions as in Fig. 4, except: (1) 20 mM of one of the following buffers were present (acetate, MES, MOPS, HEPES, Tris-HCl, CHES, CAPS, and potassium phosphate); and (2) the concentration of MB was varied in the range 0.1–16 μM, depending on pH.
The pH dependence of the relative amplitude of B2 is presented in Fig. 5C. In the WT chromatophores, the relative extent of B2 was 15–20% of the phase A2 at pH < 9.0, and decreased at pH > 9.0, reflecting the decrease of the equilibrium constant of the \(Q_AQ_B \rightarrow Q_AQ_BH_2 \) reaction (see ref. [7,46]). As it follows from Figs. 4B,C and 5C, the relative amplitude of B2 phase was not affected by the mutation in the case of L207RI mutant, but was somewhat smaller in the L217RI mutant in the whole pH range.

The respective pH dependence of the rate constant of B2 is depicted not in Fig. 5, but in the middle panel of Fig. 3 (to make the further presentation of the modeling results more convenient). Three pH regions with differing slopes can be seen: two regions with a significant pH dependence (3.5 < pH < 5.5, and 8 < pH < 10), and a region with a weaker pH dependence (5.5 < pH < 8). This pattern was conserved in both mutants. As follows from Fig. 3 (middle panel), the rate of B2 was about two times faster in the L207RI mutant than in the WT in the whole pH range studied, but was almost similar to those in the WT in the case of the L217RI mutant.

4. Discussion

4.1. Binding of \(Q_B \)

In both mutants studied, the \(P^+Q_B \) recombination kinetics included a small fast component with the characteristic time similar to those of the \(P^+Q_A \) decay (see Fig. 2). It seems, that a small fraction of RC in those mutants lacked ubiquinone in the \(Q_B \) site, in contrast to the WT where the site was fully occupied. Existence of a fraction of \(Q_B \)-lacking centers is also in line with lower A2/A1 ratio in the case of both mutants (not shown). Some distortion of the binding pocket also agrees with the observation that the oxidation of \(Q_B^- \) by redox-mediators TMPD and MB was much faster in both mutants than in the WT (not shown).

4.2. \(Q_AQ_B \rightarrow Q_AQ_B^- \) transition after the first flash

4.2.1. Electrogenic component B1

At neutral pH, the electrogenicity of B1 is likely to be due to the redistribution of protons in response to the \(Q_B^- \) formation [16,17,19,47,48]. At pH > \(pK_{212} \), the \(Q_B^- \) formation causes, in addition, the protonation of Glu-L212 from the bulk that leads to the overall increase of B1 and to its slowing [17–20]. The \(pK_{212} \) value of \(\sim 9.5 \) attributable to Glu-L212 in chromatophores from spectrophotometric data [17–19] resembles those obtained spectrophotometrically with the isolated RC (see refs. [20,39,40]), but is one pH unit lower than the estimates obtainable for chromatophores by ESR measurements [49] and by spectrophotometry (Fig. 3, left panel and Table 1). The difference might be explained by the quenching of the membrane surface potential by the residual Ca\(^{2+}\) that may remain bound to the chromatophore membrane in the electrometric cell despite the washing (see Section 2). Another cause of the lower \(pK_{212} \) might be the slightly detrimental influence of \(n \)-decane which was used to dissolve the phosphatidylcholine and ubiquinone (see Section 2).

In the L217RI mutant, the slowing of B1 was observed at pH > 9 (Fig. 5B). As in the WT, the slowing was accompanied by the increase in the relative amplitude of B1 (Fig. 5A). Both observations indicate that \(pK_{212} \) was about 9–9.5 in the L217RI mutant. After correcting by one pH unit (see above), this estimate corresponds to the figure of 10.4 that was obtained from the kinetics of the charge recombination in this mutant (see Table 1). In the L207RI mutant, both the rate and the relative amplitude of B1 were pH independent up to pH 10. The \(pK_{212} \) was estimated as 11.2 in the L207 mutant from the optical data (see Table 1). Taking into account the same correction of one pH unit, that is needed to compare the spectrophotometric and electrometric data (see above), an apparent \(pK_{212} \) of \(\sim 10.2 \) could be expected for this mutant under the conditions of electrometric measurements. Unfortunately, we were unable to obtain reliable electrometric data at pH > 10 because of a sharp acceleration in the decay of the photoelectric response and the smaller extent of this response in the mutant chromatophores. Most likely, the electrogenic reactions of the Glu-L212 protonation in response to the \(Q_B^- \) formation developed in the L207RI mutant at pH > 10, i.e. in the pH range which was inaccessible to our electrometric measurements.
4.2.2. $P^+QAQB \rightarrow PQ_AQB$ charge recombination

From the pH dependence of $P^+QAQB \rightarrow PQ_AQB$ recombination, we estimated $\Delta G'_{AB}$, the free energy gap of the $QAQB \leftrightarrow QA_QB$ equilibrium at the isoelectric point (pH) of 5.7 (see Eq. 3), and pK_{212} (see Table 1). In the case of the L207RI substitution, the free energy gap decreased by 8 meV compared to the WT. The distance between Arg-L207 and QA (r_A) is 27 Å, whereas the distance between this residue and QB (r_B) is 17 Å. The $\Delta G'_{AB}$ change could be attributed to the change in the electrostatic potential caused by the substitution. Then, using the Coulomb’s equation

$$\delta \varphi_{AB} = \frac{q}{\varepsilon_{\text{eff}}(r_B - r_A)},$$

where ε_{eff} is the effective dielectric constant, and varying r_A and r_B in the range of ±1 Å (to allow for the limited resolution of the crystal structure), a ε_{eff} estimate of 30 ± 45 could be obtained. It is noteworthy, that the application of Eq. 4 implies uniform ε_{eff} between the L207 site and the QA and QB sites, respectively. This condition seems to hold in the case of the RC. The estimates of ε_{eff} in the QB site, which have been obtained previously from the influence of site-specific mutations at the site on the stability of QB, yielded values ranging between 20 and 48 [50–54]. On the other hand, the estimate of ε_{eff}, as could be obtained from the extent of Glu-L212 protonation in response to QA formation, gives a comparable value of about 30 [55]. The particular reason of a rather homogenous and high ε_{eff} may be the presence of a diffuse water cluster at the interface between the LM heterodimer and the H-subunit of RC. This cluster was resolved in the crystal structures [1,2,56–58]. It is expected to determine the dielectric properties in this part of the RC.

Similarly, the replacement of Arg-L217 by Ile is equivalent to the appearance of a negative charge some 10 Å away from QB and 26 Å away from QA. Because Arg-L217 is closer to QB than Arg-L207, its replacement causes stronger changes in $\Delta G'_{AB}$ (21 vs. 8 meV, see Table 1). The ε_{eff} could be estimated as 35 ± 45.

The distance between the guanidinium group of Arg-L207 and the carboxy group of Glu-L212 side chain is ~12 Å. In the L207RI mutant, pK_{212} increased by 0.43 pH units (see Table 1), in a rough agreement with an estimate that could be obtained by using the Coulomb’s equation and by assuming ε_{eff} of 30 ± 45. As Arg-L217 is also ~12 Å away from Glu-L212, the electrostatic impact of the L217RI substitution on pK_{212} was expected to be of the same sign and amplitude as in the L207RI mutant. Instead, pK_{212} in L217RI mutant was by 0.3 pH units lower than in the WT.

4.3. The $QAQB \rightarrow Q_AQBH_2$ transition after the second flash

As seen in Figs. 4B,C and 5C, the relative extent of the electrogenic component B2 was smaller in the L217RI mutant than both in the L207RI one and in the WT. A plausible explanation might be a decreased amount of QB before the second flash. The smaller QB population could be due to the faster oxidation of QB and/or QA by the redox-mediator TMPD between the first and second flashes in the L217RI mutant (the respective bimolecular rate constant for the QB oxidation was ≈10 times larger in the L217RI mutant than in the WT).

Unlike the $QAQB \rightarrow QAQBH$ transition after the first flash that seems to be conformationally gated [59], the rate of the coupled transfer of the second electron and the first proton ($QAQB \rightarrow QAQBH^-$ transition) depends on ΔG_{AB} [60]. From the slope of this dependence, it has been concluded that the rate constant, $k_{AB}^{(1)}$, is proportional to the rate constant of the second electron transfer proper and to the fraction of the protonated QB semiquinone [60], so that $k_{AB}^{(1)} = m_{+1} \times [QBH^+]$. The replacement of charged amino acid residues could influence both factors. In the framework of the semiclassical Marcus theory [61], mutations could influence m_{+1} via changes: (1) in the distance between QA and QB, r_{AB}; (2) in the reorganization energy λ; and (3) in ΔG_{AB} (see ref. [61] and the Appendix). As one can see in the middle panel of Fig. 3, the rate constants of B2 almost coincided at pH < 5.0 in WT and two mutants. As the changes in r_{AB} and in λ are expected to be pH independent, we considered the convergence of the pH dependence curves at acidic pH as evidence against remarkable changes in r_{AB} and in λ. Moreover, QB is stabilized by several interactions with nearby amino acid residues, so that its ring is stretched between them (see structure C in Fig. 7 below). Even a minor,
mutation-caused displacement of Q_B would cause a breakage of some of these bonds and lead to a destabilization of the Q_A/Q_B state. In the case of L207RI and L217RI mutants, even the inevitable electrostatic destabilization was minor (see Table 1).

On the other hand, the separation of the pH dependence curves at pH > 5.0 (Fig. 3, middle panel) indicated that the $[Q_BH^+]$ extent was the one predominantly influenced by the mutations. Indeed, $K_{AB}^{(2)}$ is expected to be sensitive to the changes in $[Q_BH^+]$ only above the pK of the Q_B^*/Q_BH^+ couple. This pK has been shown to be about 5.0 in chromatophores of Rh. sphaeroides [21].

The replacement of the positively charged arginines by isoleucines was expected to cause a stronger impact on $[Q_BH^+]$ than on m_{-1}. The m_{-1} variations are determined by the changes in $\frac{1}{2} \delta \Delta G_{AB}$ that were minor (see Table 1 and Eqs. 14 and 15 in the Appendix), whereas the $[Q_BH^+]$ amount is determined by the changes in the electrostatic potential at the Q_B proper that were expected to be larger. To a first order, the disappearance of a positive charge was expected to accelerate the Q_A/Q_B transition approximately three-fold in L207RI and six-fold in L217RI. The acceleration of B2 by a factor of two was indeed observed in the L207RI mutant (see Fig. 3, middle panel). In the case of L217RI, the rate of B2 was, however, almost unaffected by the mutation. The negligibly small impact of the L217RI substitution on the rate of the Q_A/Q_B transition was rather peculiar, since Arg-L217 is located almost in direct contact with the Q_B binding site and provides hydrogen bonds for two water molecules (they are depicted in Fig. 1A). It is plausible that the replacement of Arg-L217 by Ile might influence the chemical component of the local proton activity (by changing the time-averaged amount of water molecules in the Q_B site and/or via a re-arrangement of the bound water) and thereby lead to the change in $[Q_BH^+]$.

To check whether the decrease in the chemical proton affinity could account for the observed similarity of B2 rates in the L217RI mutant and in the WT, we: (1) formalized the concept of the local proton activity; (2) estimated the factors that determine the local proton activity in the Q_B site; and (3) developed and analyzed a kinetic model that couples the rate of the Q_A/Q_B transition with the local proton activity at the Q_B site.

4.4. Local proton activity (pH^*) and its estimation in the Q_B site

Quantitatively, the local proton activity in a protein cavity (e.g. in the Q_B-site), $[H^+]^*$, could be related to the proton concentration in the bulk, $[H^+]$, via: (1) the ‘chemical’ activity coefficient of proton f that correlates the proton activity in the site to those in the bulk in the absence of the electrostatic field, so that $f=[H^+]^*/[H^+];$ and (2) the local electrostatic potential ϕ:

$$[H^+]^* = f[H^+]10^{-(\phi-F)/(2.3RT)}$$

Correspondingly, the local pH (pH^*) could be defined as:

$$pH^* = pH + \frac{\phi \cdot F}{2.3RT} + P$$

where $P = -\log(f)$ is the partitioning coefficient of proton.

As can be seen in the middle panel of Fig. 3, the rate constant of B2 depends strongly on pH at acidic and alkaline values, but is almost independent of pH at $6 < pH < 8$. The weak pH dependence at neutral pH has been reported previously for the Q_A/Q_B transition when the latter has been monitored by electron transfer [12,25], proton uptake [22], and $\Delta \phi$ generation [17,18,41]. Under the
assumption that the rate of B2 was proportional to the proton activity at the surface, the weak pH dependence has been attributed to the influence of the surface electrostatic potential [41,62]. According to this kind of rationale, the number of negatively charged groups on the surface increases at alkaline pH, so that the concentration (activity) of protons at the surface increases relative to those in the bulk medium. As a result, any protolytic reaction at the surface is expected to be less pH dependent than the same reaction in the bulk solution2. The further study has shown, however, that proton transfer into the Q_B site from the surface does not limit the rate of the reaction [60]. This finding implies that the reaction rate depends on the proton activity in the Q_B site, pH^QB, but not on the surface pH. pH^S_QB would respond to the deprotonation of the ionizable groups both at the surface of the RC, that is only 5–15 Å away from the Q_B site, and the Q_B site proper. Under conditions similar to those in our study, the surface potential of Rb. sphaeroides chromatophores has been estimated to decrease from 0 mV at pH^I of 5.7 down to −120 mV at pH of 10.0 [41]. In the simplest case, we can describe the pH dependence of \(\phi \) by a linear approximation:

\[
\phi_{\text{surface}} = -\gamma \left(\frac{2.3RT}{F} \right) (pH - pH^I),
\]

where \(\gamma \) is an empirical coefficient of 0.3 ± 0.4. By substituting this expression into Eq. 6, the linear relation between the surface and the bulk pH values can be obtained. A linear approximation of this kind could also account for the ionizable groups in the Q_B site, if many of them interacted weakly with Q_B. This, however, is not the case. The electrostatic interaction of Glu-L212 with Q_B has a magnitude of ~100 mV and is not weak [51]. We, however, can neglect the electrostatic impact of Glu-L212, as the latter is neutral in the presence of Q_B at pH < 12. With a comparable strength Q_B interacts also with an ‘acidic cluster’ that is contributed by Asp-L213, Asp-L210 and Asp-M17 [7,63,64]. The apparent pK of the acidic cluster in the presence of Q^−_B, pK_{acidic}, is about 6.0 [20,40,49,65]. Above pH 6.0, the negative charge of the cluster decreases the electrostatic potential at Q_B by ~100 mV [51].

To describe the electrostatic potential in the Q_B site, \(\phi_{QB} \), Eq. 7 is to be then modified as follows:

\[
\phi_{QB} = -\gamma \left(\frac{2.3RT}{F} \right) (pH - pH^I) - \frac{\phi_{\text{acidic}}}{1 + 10^{pH - pK_{\text{acidic}}}}. \tag{8}
\]

where \(\phi_{\text{acidic}} \) is the electrostatic interaction of the acidic cluster with Q_B.

The validity of Eq. 8 follows from the studies of the RC with Asp-L213 replaced by Asn. The crystal structure of the RC stayed unchanged in this mutant compared to the WT [66]. However, the pH dependence of the second electron transfer became linear, with a steep slope of 0.6 ± 0.8 in logarithmic coordinates (see refs. [40,65], the respective experimental points from ref. [65] are plotted in Fig. 6, right panel below). In this mutant, the rate of the second electron transfer has been shown to be limited by the proton uptake from the surface [67]. Correspondingly, the pH dependence of the rate constant followed the pH dependence of proton activity at the surface (Eq. 7) and not in the Q_B site (Eq. 8).

Hence, the non-linear pH dependence of the rate constant of B2 (see Fig. 3, middle panel) seems to be contributed: (1) by a diffuse influence of weakly interacting ionizable groups leading to the decrease in the pH dependence slope from 1 to ~0.7 in the whole pH range; and (2) by a ~100 mV change in the local electrostatic potential in the Q_B site due to a deprotonation event in the acidic cluster at pH > 6.0. This deprotonation causes a plateau in the pH dependence at 6.0 < pH < 8.0.

4.4.1. Summary

Summarizing this section, the Q_B turnover rate depends on the local proton activity, pH^*, in the immediate vicinity of Q_B rather than on pH in the bulk or at the surface, as long as the proton delivery from the surface into the Q_B is not the rate-limiting reaction [60]. According to Eq. 6, the pH^* value is expected to be sensitive to the changes both in the local electrostatic field (via \(\phi \)) and in the local chemical proton affinity (via \(P \)). Correspondingly, we used pH^QB, as defined by Eqs. 6 and 8, instead of the bulk pH throughout the further modeling.

2 A similar reasoning has been exploited independently to rationalize the non-linear pH dependence observed with bacteriorhodopsin [81].
4.5. Kinetic model of the $Q_A^3 Q_B^3 \rightarrow Q_A Q_B H_2$ transition

The question of how the changes in protein electrostatics could influence the rates of electron and proton transfer is of a general interest. Although the electrostatic calculations have been performed both for the RC of *Rb. sphaeroides* [63,64] and of *Rps. viridis* [68], their results could hardly be coupled with the *kinetics* of the respective electron and proton transfer reactions. The impossibility to calculate either pH* or its changes on mutations is among many obstacles. We used here an alternative approach and took the experimentally determined changes in pK_{212} (see Table 1) as a measure of pH* changes in the Q_B site in response to the mutations. Complementarily, the changes in ΔG_{AB} were utilized to estimate the dielectric properties of the Q_B site. We inquired, to what extent the mutation-caused changes in the rate of the $Q_A^3 Q_B^3 \rightarrow Q_A Q_B H_2$ transition after the second flash are determined by the changes in the thermodynamic properties of the Q_B site that are estimable from the charge recombination kinetics after the *first* flash.

The $Q_A^3 Q_B^3 \rightarrow Q_A Q_B H_2$ transition seems to be suitable for kinetic modeling. The reaction proceeds with both Q_A^3 and Q_B^3 tightly fixed in exact, known positions. The rate of the $Q_A^3 Q_B^3 \rightarrow Q_A Q_B H_2$ transition depends on the respective free energy difference [60] and, hence, is not limited by a conformational change. Therefore the impact of various factors (e.g. pH, ionic strength, amino acid substitutions) can be considered quantitatively. The kinetics of B2 were acceptably fitted by a single exponential at room temperature both in WT and both mutants (see Fig. 4B,C) that indicates the functional homogeneity of the Q_B^3-containing fraction of the RC. It is noteworthy, that the weaker Q_B binding and the more pronounced interaction of Q_B^3 with redox-mediators in both mutants compared to the WT (see above) could influence the relative extent of B2, but not the rate of the $Q_A^3 Q_B^3 \rightarrow Q_A Q_B H_2$ transition that was modeled.

The reaction of Q_B reduction could be described by the kinetic Scheme III (taken from ref. [7]) that is depicted below. Despite its complexity, the estimates for all the parameters are available. These estimates are presented in the upper row of Table 2 and substantiated in the Appendix.

Here indexes $m_{1,2}$, $m_{2,2}$ denote the direct/reverse rate constants of the second electron transfer reactions in two kinetic routes, respectively; k_{+1}, k_{+2} are the rate constants of Q_B protonation/deprotonation reactions involving the first proton (H_2^+) in two kinetic routes, respectively, k_{-3} denotes the direct/reverse rate constants of reactions involving the second proton (H_2^+); k_{off}, k_{on} are the rate constants of the ubiquinol $Q_B H_2$ dissociation and binding in the site Q_B, respectively; M_1 is the equilibrium constant of the coupled transfer of the second electron and the first proton to Q_A^3; M_2 is the equilibrium constant of the $Q_B H_2$ formation; the equilibrium constant M relates to the complete process of the reduction, protonation and dissociation of $Q_B H_2$ after the second flash.

4.5.1. Mutation-caused changes in the rate of the second electron transfer

The mutation-caused changes in the rate of the
second electron transfer, that owed to the changes in \(\Delta G_{AB} \), could be calculated in the framework of the semiclassical Marcus theory \([61]\) as is described in the Appendix.

4.5.2. Mutation-caused changes in the local activity of protons

The mutation-caused changes in the local activity of protons, \(\delta \text{pH}^* \), were assumed, in accordance with Eq. 6, to be contributed by two terms, namely by the electrostatic influence of the mutation, \(\delta \phi \), and by the change in the chemical proton partitioning coefficient, \(\delta P \):

\[
\delta \text{pH}^* = \frac{\delta \phi \cdot F}{2.3RT} + \delta P
\]

(9)

The electrostatic impact of mutations on \(Q_B \) (\(\delta \phi_{Q_B} \)) was calculated by the Coulomb’s equation,

\[
\delta \phi_{Q_B} = \frac{1}{\varepsilon_{\text{eff}} \times r_B},
\]

where \(r_B \), the distance between the substituted residue and \(Q_B \) was taken from the crystal structure. The change in the partitioning coefficient \(\delta P \) was assumed to be uniform throughout the \(Q_B \)-binding pocket and was estimated from the \(pK \) shift of Glu-L212 residue:

\[
\delta P = -\delta pK_{212} \cdot \frac{\delta \phi_{212} \cdot F}{2.3RT}
\]

(10)

Here \(\delta \phi_{212} \), the electrostatic impact of mutations on Glu-L212, was calculated by the Coulomb’s equation as described above, with the only difference that the distance between the substituted residue and the carboxy group of Glu-L212 was taken on calculation. Eq. 10 implies that the experimentally determined \(pK \) shifts of Glu-L212, \(\delta pK_{212} \), (see Table 1) reflected both the electrostatic impact of mutations on Glu-L212, that could be independently calculated from the crystal structure, and the changes in the chemical affinity to proton, \(\delta P \). Correspondingly, the latter value could be estimated from the difference between the experimentally established \(pK_{212} \) shifts (see Table 1) and the expected changes in the electrostatic potential at Glu-L212 calculable from the X-ray structure of the RC.

4.5.3. Chromatophores of \(\text{Rb. sphaeroides} \)

Taking the kinetic and thermodynamic parameters as defined above and in the Appendix, we included them into a kinetic model that described the electron and proton transfer reactions at the \(Q_B \) site upon the second flash in accordance with Scheme III. The respective system of differential equations and its mathematical solution are presented in the Appendix. The list of the independently varied parameters is given in Table 2. Three data sets were modeled simultaneously:

1. the \(\text{pH} \) dependence of \(\Delta G_{AB} \) as determined from the \(P^+Q_AQ^+_Q \text{Q}_B \rightarrow PQ_AQ_B \) charge recombination kinetics in the WT and L207RI and L217RI mutants (Fig. 3, left panel). We used these data to estimate the changes in \(\Delta G_{AB} \) and in the non-electrostatic proton affinity (\(\delta P \)) (see Table 1 and Eqs. 9 and 10);

2. the \(\text{pH} \) dependence of the \(B2 \) rate constant (\(Q_AQ^+_Q \text{Q}_B \rightarrow Q_AQ_BH_2 \) reaction) in the WT and L207RI and L217RI mutants at \(+25^\circ \text{C}\) (Fig. 3, middle panel); and

3. the \(\text{pH} \) dependence of the rate constants of the slow and the fast components of \(B2 \) as resolved in the WT chromatophores at \(+10^\circ \text{C}\) (Fig. 3, right panel). Originally published elsewhere \([28]\), these data reflect the \(\text{pH} \) dependence of the rates of the first (\(B2_{\text{fast}} \)) and the second (\(B2_{\text{slow}} \)) proton transfer to \(Q_B \). The correspondence of the model with these data seemed to be crucial for the reliability of the modeling.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\gamma)</th>
<th>(pK_{\text{acidic}})</th>
<th>(\phi_{\text{acidic}}) (mV)</th>
<th>(pK_1)</th>
<th>(pK_2)</th>
<th>(m_{+1}) (s(^{-1}))</th>
<th>(m_{+2}) (s(^{-1}))</th>
<th>(k_{+3}) (s(^{-1}), pH 7)</th>
<th>(pK_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.4</td>
<td>6.0</td>
<td>100</td>
<td>5.0</td>
<td>10.5</td>
<td>(10^5)</td>
<td>(10^3)</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Final</td>
<td>0.38</td>
<td>5.84</td>
<td>83</td>
<td>4.2</td>
<td>> 11</td>
<td>(8.89 \times 10^4)</td>
<td>< (10^3)</td>
<td>1.68 \times 10^4</td>
<td>10.95</td>
</tr>
</tbody>
</table>

Top row: the initial, parameter set as obtained from the literature. Bottom row: the final parameter values as obtained by the optimization fit of experimental data in the middle and right panels of Fig. 3. See text for details.
The obtained model curves described quantitatively the whole set of data (see the lines plotted in all panels of Fig. 3). The found parameter values (Table 2, bottom) were close to the initial estimates that were derived from the literature (Table 2, top). The model predicted both the acceleration of the reaction kinetics in the L207RI mutant and the small deviations from the WT rates in the L217RI mutant. Reasonable fits were obtained when the O_{eff} value was varied in the range 30 ± 40. This range corresponds to the estimates of O_{eff} in the Q$_B$ site that were obtained from the functional data both by us and by others (see above). The best fit was obtained with $O_{\text{eff}} = 36$. Table 3 shows values of $\delta \phi_{\text{Q}_B}$, $\delta \phi_{212}$, and δP that correspond to $O_{\text{eff}} = 36$. It is noteworthy, that no reasonable fit was possible unless the possibility of changes in the local, chemical affinity to proton was explicitly taken into account as described by Eq. 9. The modeling shows, that although the L217RI substitution caused a stronger change in the electrostatic potential in the Q$_B$ site compared to the L207RI (see Fig. 3, left panel and Table 3), the opposite impacts from the changes in the electrostatic and chemical proton affinities seemed to compensate each other, so that the kinetics of $Q_AQ_BH_2$ reaction in the L217RI mutant resembled those in the WT chromatophores (Fig. 3, middle panel).

4.5.4. Isolated RC of Rb. sphaeroides

The presented model is directly applicable only to the RC mutants which retain the Glu-L212 residue, because the changes in pK_{212} are used as a measure of the proton affinity changes in the Q$_B$ site. Another restriction is the absence of kinetic limitation by proton transfer. We assumed an absence of such a limitation in the studied two mutants because neither the proton-transferring acidic residues were replaced, nor the rate of the electrogenic proton transfer was slowed down (it even increased in the L207RI mutant). The assumption, still, may not hold for any arbitrary mutant. From the dependence of the second electron transfer rate $k_{2AB}^{(2)}$ and ΔG_{AB}, it has been recently concluded that proton transfer is not limiting, besides the WT, also in the M44ND, L213DN/ M44ND, L213DN/H177RH and L213DN/M233RC mutants of Rb. sphaeroides [67]. So we put the model on a test and checked, whether it could predict the changes in the pH dependence of the second electron transfer rate in these mutants from the changes in the pH dependence of their P^+Q_B recombination kinetics.

In Fig. 6 (both panels), the original experimental data from refs. [65,67,69] are plotted. These pH dependence curves were obtained with isolated RC and differ somewhat from those in chromatophores. Therefore, we initially fitted the pH dependence curves of the P^+Q_B recombination in the left panel of Fig. 6 to estimate the values of $\delta \Delta G_{AB}$ and δP_{K212} for the WT and mutant RC preparations. The same fitting procedure, as described for chromatophores in Section 3, was used. The obtained estimates are presented in Table 4.

In the case of the isolated RC, the rate constants not of B2, but of the second electron transfer, $k_{2AB}^{(2)}$ ($Q_AQ_BH_2$ reaction), were available. Using the values from Table 4, we calculated the theoretical pH dependence of $k_{AB}^{(2)}$ in isolated RC as is described in the Appendix. The fixed $O_{\text{eff}} = 36$ was taken on

<table>
<thead>
<tr>
<th>Chromatophores</th>
<th>Isolated reaction centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>L207RI</td>
<td>L217RI</td>
</tr>
<tr>
<td>$\delta \phi_{\text{Q}_B}$</td>
<td>-23.8 mV</td>
</tr>
<tr>
<td>$\delta \phi_{212}$</td>
<td>-31.5 mV</td>
</tr>
<tr>
<td>δP</td>
<td>0.10</td>
</tr>
</tbody>
</table>

See the text for the calculation procedure.

3 The pH dependence both of the $P^+Q_B \rightarrow PQ_B$ back reaction and of $k_{AB}^{(2)}$ were similar in L213DN/H177RH and L213DN/M233RC double mutants at pH > 6.0 [67], therefore, in Fig. 6, we only depicted the L213DN/H177RH data.
calculations, for simplicity. The replacement of Asp-L213 by Asn in some mutants could cause changes in the composition and/or properties of the acidic cluster. To account for such changes, we treated p_{acidic} and pK_{acidic} as variable parameters upon the modeling of the RC data. The calculated curves are plotted in the right panel of Fig. 6, and the parameter values are summarized in Tables 3, 5 and 6.

Fig. 6 shows that the model straightforwardly predicted the changes in the pH dependence of $k_{2}^{\dagger AB}$ as compared to the WT, from the changes in the respective pH dependence of the $P_{\text{Qh}}^3 B$ back reaction for all the mutants. It is noteworthy that the fit of the experimental points was achieved with parameter values that were very close both to the initial estimates (that were derived from the literature, see the upper line in Table 2) and to the chromatophore parameters (compare with the lower line in Table 2).

For comparison, the data on L213DN were also analyzed (see both panels of Fig. 6). Here, the pH dependence of the B2 rate constant could be fitted only under the assumption that the proton transfer was three orders of magnitude slower than in the WT. This model prediction is in a full agreement with the $k_{2}^{\dagger AB}$ independence of ΔG_{AB} in this mutant. This independence has been attributed to the slower, rate-limiting transfer of the first proton to Q_{B} in the absence of Asp-L213 [54,60,67].

As we did not take into account the influence of the protonation event in the acidic cluster on the recombination kinetics when modeling the chromatophore data in Fig. 34, we also did not model the acidic range of the pH dependence curves in the left panel of Fig. 6. In the latter case, however, the data on the $P_{\text{Qh}}^3 B \rightarrow P_{\text{Qh}}$ back reaction were available up to pH 5.0. It is noteworthy, that pK_{acidic} values that were obtained from the fitting of the data in the right panel of Fig. 6 (see Table 6 and arrows in the left panel of Fig. 6) correlated roughly with the respective pH values at which the $P_{\text{Qh}}^3 B \rightarrow P_{\text{Qh}}$ recombination started to slow down onacidification because of a Q_{B}-stabilizing protonation event in the acidic cluster [7,49]. This correspondence: (1) demonstrates the intrinsic consistency of the model; and (2) supports our suggestion on the deprotonation event in the acidic cluster as the main cause of the plateau in the pH

4 No reliable spectrophotometric data were available at pH < 7.0; for chromatophores, the acidic segment of the pH dependence could be better resolved with the EPR technique; see ref. [49].
dependence of the rate constant of the $Q_A^3 \rightarrow Q_A Q_B H_2$ transition (see above). The model yielded a pK_1 value for the Q_B^+/Q_B^- couple of 4.2 in chromatophores and of 3.2 in the RC preparations (see Tables 2 and 5, respectively). The lower pK_1 in the RC preparations, as compared to chromatophores, is in good agreement with experimental observations of Lavergne and coworkers. They have found recently that the Q_B^+/Q_B^- couple titrated at much lower pH values in their isolated RC preparations ($pK_1 \approx 4.0$) than when chromatophores in solution were studied ($pK_1 \approx 5.0$), supposedly, due to the changes in the RC environment [21].

4.5.5. Summary

Summarizing this section, the $Q_A^3 Q_B^\rightarrow Q_A Q_B H_2$ transition rate seems to depend both on the electrostatic potential at the Q_B site and on the non-electrostatic, chemical affinity of the site to protons. Such a dual dependence elucidates why the introduction of neutral amino acid residues instead of negatively charged ones has a stronger impact on the rate of the Q_B turnover, than the replacement of positively charged residues by neutral ones (see [8] for a survey of the mutation-due effects in the RC). In both cases, the disappearance of a charged residue is likely to decrease the chemical component of proton affinity. When a negatively charged residue is replaced by a neutral one, the decrease in the chemical proton affinity is amplified by the disappearance of a negative charge, as both impacts decrease the proton activity at the Q_B site. When a positively charged residue is replaced by a neutral one, the decrease in the chemical proton affinity could be, however, fully compensated by the increase in the electrostatic proton affinity caused by the disappearance of a positive charge, as the example of the L217RI mutant shows. Thereby the apparently proton-repulsing, positively charged amino acid residues could increase the local proton activity by contributing to its chemical component (e.g. by providing water binding sites). This general conclusion relates to any enzymatic reaction. A good example in evidence is the conserved lysine residue that seems to govern the proton trapping in the cytochrome c oxidase [70,71]. Correspondingly, our approach, that allows to estimate separately the impact of mutations on electrostatic and chemical proton affinities by comparing the experimentally established pK shifts with the structure-based electrostatic calculations, may also be applied to other enzymes.

| Table 4 |
The impact of amino acid substitutions on ΔG_{AB} and pK_{212} in isolated RC of Rb. sphaeroides. See the text for details.

<table>
<thead>
<tr>
<th>Strain</th>
<th>ΔG_{AB} (meV)</th>
<th>$\delta \Delta G_{AB}$ (meV)</th>
<th>pK_{212}</th>
<th>δpK_{212}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>75.9</td>
<td>0</td>
<td>9.76</td>
<td>0</td>
</tr>
<tr>
<td>L213DN</td>
<td>148.9</td>
<td>73.0</td>
<td>8.55</td>
<td>1.21</td>
</tr>
<tr>
<td>L213DN and M44ND</td>
<td>91.3</td>
<td>15.4</td>
<td>9.18</td>
<td>0.58</td>
</tr>
<tr>
<td>M44ND</td>
<td>30.3</td>
<td>45.6</td>
<td>10.39</td>
<td>0.62</td>
</tr>
<tr>
<td>L213DN and H177RH</td>
<td>43.7</td>
<td>32.2</td>
<td>8.89</td>
<td>0.88</td>
</tr>
</tbody>
</table>

| Table 5 |
The final set of main parameters as calculated from the fit of experimental data in Fig. 6 (isolated RC of Rb. sphaeroides).

<table>
<thead>
<tr>
<th>Variable</th>
<th>γ</th>
<th>pK_1</th>
<th>m_{-+} (s$^{-1}$)</th>
<th>k_{+} (s$^{-1}$, pH 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.22</td>
<td>3.16</td>
<td>1.19-105</td>
<td>1.99-107</td>
</tr>
</tbody>
</table>

The same initial parameter values as in the case of chromatophores (see the top row in Table 2) were used upon the fit.

| Table 6 |
The values of pK_{acidic} and ϕ_{acidic} as obtained from the fit of the data in the right panel of Fig. 6 (isolated RC of Rb. sphaeroides).

<table>
<thead>
<tr>
<th>Strain</th>
<th>pK_{acidic}</th>
<th>ϕ_{acidic} (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>6.10</td>
<td>106</td>
</tr>
<tr>
<td>L213DN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L213DN and M44ND</td>
<td>6.89</td>
<td>104</td>
</tr>
<tr>
<td>M44ND</td>
<td>5.60</td>
<td>109</td>
</tr>
<tr>
<td>L213DN and H177RH</td>
<td>6.85</td>
<td>73</td>
</tr>
</tbody>
</table>
4.6. A mechanistic model

The results of the modeling in Tables 2 and 4 show that the coupled second electron/first proton transfer reaction was faster than the binding of the second proton at room temperature \((k_{\text{AB}}^{\text{D}} = m + 1, 10^p k_{\text{pH}}^{-1} > k_{\text{pp}}^{\text{D}}) \). Hence, the overall \(Q^\alpha A Q^\beta A H_2 \rightarrow Q^\alpha Q^\beta H_2 \) transition seemed to be kinetically controlled by the transfer of the second proton. The same conclusion could be drawn from the temperature dependence of the B2 rate that has been presented elsewhere [28]. Although the split of the B2 kinetic into two distinct components, B2fast and B2slow, was reliably discernible only below 15°C, their extrapolation into the higher temperature range showed that B2slow retarded relative to B2fast up to \(\sim 30^\circ \text{C} \) (see the Arrhenius plots in Fig. 2 of ref. [28]).

In Fig. 7, we attempted to rationalize these findings by a tentative scheme of the \(Q^\beta \) turnover in the RC of \(Rb. \) sphaeroides. The scheme correlates with previously suggested mechanistic schemes of the \(Q^\beta \) turnover in the RCs of \(Rb. \) sphaeroides [1] and \(Rps. \) viridis [72]. However, we put more emphasis on the crucial, in our opinion, alternating interaction of Glu-L212 with the \(Q^\beta \) ring and His-L190, respectively.

As we have discussed in more detail elsewhere [19], a wealth of data on the \(Q^\beta \) site operation in \(Rb. \) sphaeroides could be understood by a suggestion that the neutral ubiquinone molecule can attain two energetically comparable conformations in the binding pocket. We have hypothesized that in one conformational state the protonated form of Glu-L212 \([45,73]\), by the UV-visible spectroscopy at 390 nm (\(Q^\alpha \) decay in the RC where \(Q^\alpha \) ubiniquinone has been replaced by a 2-methyl-3-phytyl-1,4-naphthoquinone [16]) and at 757 nm (electrochromic response of the RC bacteriopheophytin to \(Q^\alpha \) formation [47]), and by electrometry via the accompanying \(\Delta \psi \) changes [19]. In the case of the isolated RC preparations, the respective \(E_a \) values, when estimated, were 14–16 kJ/mol for the fast component(s) and 30–40 kJ/mol for the slower one(s) [16,47]. In the case of chromatophores, the respective \(E_a \) estimates were \(< 10\) and \(\sim 60 \) kJ/mol, respectively [19].

The further step of the \(Q^\beta \) turnover is the joint transfer of the second electron and the first proton estimated as \(\leq 6.0 \) for the \(Q^\beta \) state (see ref. [19] and references therein). In the alternative proximal state \(Q^\beta \), the quinone ring, rotated by \(180^\circ \) compared to \(Q^\beta \), is \(\sim 5 \) Å closer to Glu-L212 (see ref. [1] and structure B in Fig. 7). The presence of \(Q^\beta \) prevents the formation of the water bridge between Glu-L212 and His-L190. The absence of the water bridge and the proximity of oxygen atoms of \(Q^\beta \) keep Glu-L212 protonated at neutral pH. The \(Q^\beta \) state seems to dominate at room temperature [19]. The pK212 of this state corresponds to the value of \(\sim 10.0 \) that could be experimentally established from the pH dependence of the \(P^\beta Q^\beta \rightarrow PQ^\beta \) recombination (see Section 3 and refs. [19,39,40,45] for more details).

In the fraction of the \(Q^\beta \)RCs, the delivery of the first electron (\(B \rightarrow C \) transition in Fig. 7) is accompanied by a minor quinone displacement into the ‘semi-quinone’ position that has been resolved in the low-temperature structure of the light-adapted RC ([1], see structure C in Fig. 7). The \(E_a \) of such a displacement is expected to be low. In the fraction of the \(Q^\beta \)RC, the \(Q^\beta^- \)formation is coupled with the movement of the quinone ring into the proximal position \((A \rightarrow B^? \rightarrow C \) transition in Fig. 7) accompanied by the protonation of Glu-L212 (see [1,19] for more details). As this reorganization includes the propeller twist of the quinone in the \(Q^\beta \) pocket, the reaction is expected to be slower than in the previous case and to have a higher \(E_a \). And indeed, the faster kinetic component(s) of the \(Q^\beta \) reduction seem to be less dependent on temperature, than the slower ones. The \(Q^\beta \) reduction has been monitored by the time-resolved IR-spectroscopy at 1487 cm\(^{-1}\) (\(Q^\alpha \) formation) and 1725 cm\(^{-1}\) (appearance of the protonated Glu-L212 [45,73]), by the UV-visible spectroscopy at 390 nm (\(Q^\alpha \) decay in the RC where \(Q^\alpha \) ubiquinone has been replaced by a 2-methyl-3-phytyl-1,4-naphthoquinone [16]) and at 757 nm (electrochromic response of the RC bacteriopheophytin to \(Q^\alpha \) formation [47]), and by electrometry via the accompanying \(\Delta \psi \) changes [19]. In the case of the isolated RC preparations, the respective \(E_a \) values, when estimated, were 14–16 kJ/mol for the fast component(s) and 30–40 kJ/mol for the slower one(s) [16,47]. In the case of chromatophores, the respective \(E_a \) estimates were \(< 10\) and \(\sim 60 \) kJ/mol, respectively [19].
to \(Q_B^- \) (C→D transition in Fig. 7). The \(E_a \) of this transition has been shown to be low, \(\sim 10 \) kJ/mol [28]. The quinone ring either does not change its position on this transition or shifts slightly to occupy a position that has been modeled from the crystal structure of the stigmatellin-containing RC of \(Rps. \) viridis [72] and that is shown as state D in Fig. 7. On the contrary, the higher \(E_a \) of the second proton
transfer (∼60 kJ/mol in chromatophores [28]) and the larger H/D ratio attributed to this reaction [74] indicate that this step could be accompanied by a structural change. As has already been discussed [28,72], the quinol ring has to twist back to attain the distal ‘quinol’ position in the course of ubiquinol formation. Most likely, the binding of the second proton to O4 atom of QBH$^{3-}$ is coupled with this rotation. The high E_a indicates that the detachment of the quinol ring is the rate-limiting event. Most likely, the QBH$^{3-}$H$^{+}$QBH$^{2-}$ equilibrium is shifted to the left until QBH$^{2-}$ detaches to move into the distal, ubiquinol position (D→E transition in Fig. 7), followed by the reset of the water bridge between Glu-L212 and His-L190 (E→F transition in Fig. 7). The water bridge is likely to prevent the reversion of the reaction and to contribute to the stabilization of QBH$^{2-}$ in the distal state.

Thus, the first electron transfer is limited by the distal to proximal ubiquinone transition in the majority of the RC [1,19], whereas the formation of QBH$^{2-}$ seems to be limited by the reverse proximal to distal twist of the ubiquinone ring. Therefore, E_a of B1slow and B2slow (determined in [19] and [28], respectively) are comparably high. The high E_a of the second protonation event makes it the rate-limiting step of the overall QAQAQBH$^{2-}$ transition.

4.6.1. The mechanism of the Q_B reduction and protonation as a whole

Considering the mechanism of the Q_B reduction and protonation as a whole, it is worthwhile to note the precise tuning of charge interactions on different steps of the RC turnover. The electrostatic calculations indicate that the surplus potential around Q_B is negative [64], and as such can hardly contribute to the stabilization of Q_B^{-}. Instead, the negative charge of Q_B^{-} is stabilized by a dynamic redistribution of protons in the Q_B pocket after the first electron transfer [16-21,47]. Particularly the pK_{212} shift from ≲6.0 in the Q_B^{-} state to ≳12.0 in the presence of Q_B^{-} leads to the protonation of Glu-L212 and, hence, to the appearance of a proton only 4 Å away from Q_B. Most likely, pK_{212} switches back to ≲6.0 on the last step of the Q_B turnover, when the formed QBH$^{2-}$ detaches to move into the distal position, and the water molecules wedge in between the withdrawing quinone ring and Glu-L212 to restore the water bridge between Glu-L212 and His-L190 (compare the structures A and F in Fig. 7; see also ref. [75] for a more detailed consideration of pK-switching mechanism). The negative charge on Glu-L212 keeps the electrostatic potential in the Q_B site low and prevents the deprotonation of QBH$^{2-}$ until the latter exchanges for a ubiquinone from the membrane pool.

5. Concluding remarks

We characterized two mutants of $Rb.$ sphaeroides where basic residues around Q_B were replaced by the neutral ones (Arg-207→Ile and Arg-217→Ile). The decreased stability of the Q_B^{-} state in both mutants agreed with the expected electrostatic changes at the Q_B site. At the same time, more complex perturbations in the electron/proton coupling during the $Q_AQ_BH^+→QAQBH_2$ transition could be understood only if the mutation-caused changes in the non-electrostatic, chemical proton affinity were taken into account. We suggest that a high chemical affinity of a catalytic site to proton is as important for the attracting a proton from the bulk water, as the presence of a surplus negative charge. Based on functional studies, structural data and kinetic modeling, we suggest a mechanistic scheme of the Q_B turnover. The detachment of the formed ubiquinol from its proximal position next to Glu-L212 is considered as the rate-limiting step of the reaction cycle.

Acknowledgements

Thanks are due to Dr. Kevin Gray for the useful information concerning the site-specific mutagenesis and to Mrs. Irina Bukhova for her help in growing the photosynthetic bacteria. We wish to thank Drs. Melvin Y. Okamura and Mark L. Paddock for the access to their original experimental data prior to publication and valuable advice, and Dr. Jérôme Lavergne for the access to ref. [21] prior to publication. Drs. Andrey D. Kaufman, Lev I. Krishtalik, Roy C.D. Lancaster, Vladimir P. Shinkarev, Michael I. Verkhovsky, Colin A. Wraight and Lev S. Yaguzhin-

BBABIO 44868 18-7-00 Cyaan Magenta Geel Zwart
sky are acknowledged for valuable discussions. We thank Prof. Wolfgang Junge and Vlaminid P. Kulachev for their stimulating interest to our work. This work was supported in part by grants from the Russian Foundation for the Basic Research (99-04-48652 and 97-04-50179), the Max-Planck-Gesellschaft, the Deutsche Forschungsgemeinschaft (Mu-1285/1) and the European Commission (INTAS-93-2852).

Appendix

Here we consider in more detail the partial reactions in Scheme III and present the mathematical solution of the corresponding kinetic model.

The first proton is, supposedly, delivered to the O1 carbonyl oxygen of Q_B via Ser-L223 and, perhaps, Asp-L213 [8]. The acidic cluster keeps the proton activity almost constant at neutral pH, so that proton transfer is not rate-limiting [60]. For Rb. sphaeroides chromatophores, the rate of B2fast component measured at pH_1 of 5.7 (see Fig. 3, right panel) can be used as the lower estimate of the rate constant of the first proton delivery to Q_B. The corresponding expression for the rate constant of proton transfer would then be

\[k_{+1}, k_{+2} = 5 \times 10^{10-pH} \text{ (s}^{-1}) \]

(11)

The second proton delivery does not limit the rate of the Q_BH^+/Q_BH_2 transition, as the latter seems to be limited by the detachment of the formed ubiquinol from the proximal binding site (see the main text). Then the rate of the second proton transfer could be described by the expression

\[k_{+3} = A_3 \times 10^{-E_a/2.3kT} \times 10^{-pH} \]

(12)

where the pre-exponential factor \(A_3 \) is a variable parameter.

As long as the proton transfer from the surface is not rate-limiting [60], one can also define the partial equilibrium constants connected with the pK values of the neutral semiquinone \(Q_BH^- \) (\(K_1 = 10^{pK_1-pH} \)), the ubiquinol-anion \(Q_BH^- \) (\(K_2 = 10^{pK_2-pH} \)) and the neutral ubiquinol \(Q_BH_2 \) (\(K_3 = 10^{pK_3-pH} \)). The respective pK values have been estimated as \(\pm 5 \) for the \(Q_B^*/Q_BH^- \) couple (pK1) [8,21,76], as \(\sim 10.5 \) for the \(Q_B^*/Q_BH^- \) (pK2) couple [46], and as \(\pm 9.0 \) for the \(Q_BH^-/Q_BH_2 \) (pK3) couple [46]. One could expect that at pH > 9, the extent of B2 would drop, because of inability of the second proton to bind at pH > pK_3. This was not observed. Instead, two-fold decrease of the total amplitude of electrogenic response was observed at pH \(\sim 10.5 \) (Fig. 5C). Apparently, the rate of the direct reaction matched the rate of the reverse one only at this pH value. Hence, the overall reaction seemed to be driven by the dissociation of ubiquinol from the site Q_B at pH > pK_3 (see ref. [46]). The rate constant \(k_{off} \) of this dissociation in chromatophores of Rb. sphaeroides has been estimated as >\(10^4 \text{ s}^{-1} \) [77]. If the rate of ubiquinol release was slower than its second protonation (\(k_{off} < k_{+3} \)) the kinetics of B2 at pH > 9 should consist of two components with characteristic times corresponding to \(k_{off} \) and \(k_{+3} \). The apparent mono-exponentially of B2 kinetics at this pH ([17,18,28], see also Fig. 4C), indicates that the rate \(k_{off} \) was faster than \(k_{+3} \). Hence, the reactions determined by \(k_{off} \) and \(k_{on} \) could be neglected, so that we used an apparent pK_1, pK_2, that accounted both for the second protonation and ubiquinol release, throughout the modeling. We used a value of \(10^3 \text{ s}^{-1} \) as an initial estimate of \(k_{+3} \), and estimated pK_1 as about 10.5 from the pH dependence of the B2 amplitude (Fig. 5C).

The rate constants of proton dissociation, \(k_{-1}, k_{-2} \), and \(k_{-3} \) could be obtained from the known rate constants of the respective direct reactions and the pK values.

The equilibrium constant of the coupled transfer of the second electron and the first proton to Q_B, \(M_1 \), has been shown to match 1.0 at pH 8.5 with RC preparations from the L212EQ mutant [40]. In our calculations, we used an estimate that was obtained with WT chromatophores from the pH dependence of the B2fast amplitude in our electrometric set-up; according to it, \(M_1 \) matches 1.0 at pH 8.7 ([28] and unpublished observations).

\[M_1 = \frac{k_{+1}m_{+1}}{k_{-1}m_{-1}} = \frac{k_{+2}m_{+2}}{k_{-2}m_{-2}} \]

(13)

The rate constant \(m_{+1} \) of the second electron delivery to Q_BH^+ was estimated as >\(10^5 \text{ s}^{-1} \) from the rate of B2 at pH \(\sim 4.0 \) (see Fig. 3, middle panel).

The rate constant \(m_{+2} \) of the second electron
transfer to the anionic Q_B^{-} (the bottom pathway in Scheme III) was estimated as 10^3 s^{-1} in accordance with ref. [8].

The rate constants of the reversed electron transfer reactions, m_{-1} and m_{-2}, could be calculated from Eq. 13 by using the values of the equilibrium constants K_1, K_2, and M_1.

The changes in the rate of electron transfer from Q_A^{-} to Q_B^{-} caused by the site-specific mutations were described in the framework of the Marcus theory [61]

$$k_{AB} = \frac{\pi}{\hbar} \frac{|V|^2}{\sqrt{\pi kT\lambda}} \exp\left(-\frac{(\lambda + \Delta G_{AB}^0)^2}{4\lambda kT}\right)$$

(14)

where V is the electron matrix element and λ is the reorganization energy. As discussed in the main text, we considered the change in the free energy difference $\delta \Delta G_{AB}$ as the main factor that influenced the electron transfer rate in the mutant chromatophores. Since in the case of electron transfer from Q_A^{-} to Q_B^{-}, $|\Delta G_{AB}| \ll \lambda$ [78]:

$$\ln(k_{AB}) \propto -\frac{1}{2} \delta \Delta G_{AB}.$$

(15)

According to Eq. 15, the decrease of the driving force (positive $\delta \Delta G_{AB}$) slows down the direct electron transfer and accelerates the back reaction to the same extent. The rate constant m_{-1} and m_{-2} of the second electron transfer reactions in the mutant chromatophores have been changed according to Eq. 15 with $\delta \Delta G_{AB}$ values taken from Table 1.

A1. Mathematical solution

To simplify the notations, it is convenient to introduce one-letter abbreviations for concentrations of different partial states of Q_A and Q_B, respectively:

$[Q_A Q_B^+] = A$, $[Q_A^+ Q_B H^+] = B$, $[Q_A Q_B^{-}] = C$,

$[Q_A Q_B H^-] = D$, $[Q_A Q_B H_2] = E$.

The system of differential equations corresponding to Scheme III could be written then as follows:

$$\begin{align*}
\dot{A} &= -(k_{+1} + m_{+2}) A + k_{-1} B + m_{-2} C \\
\dot{B} &= k_{+1} A - (k_{-1} + m_{+1}) B + m_{-1} D \\
\dot{C} &= m_{+2} A - (k_{+2} + m_{-2}) C + k_{-2} D \\
\dot{D} &= m_{+1} B + k_{-2} C - (k_{-2} + m_{-1} + k_{+3}) D + k_{-3} E \\
\dot{E} &= k_{+3} D - k_{-3} E
\end{align*}$$

(16)

Because of the normalizing condition,

$$A + B + C + D + E = 1,$$

(17)

the real number of the differential equations is only four. Nevertheless, this system is rather complicated and should be simplified for a quantitative analysis. The reduction can be done by the standard method of stationary concentrations. According to this approximation, concentrations of the intermediate states B and C are treated as being in fast equilibrium with the slowly changing variables A, D, and E. This conclusion directly follows from the fact that concentrations of the states B and C are always small due to the low pK value of semiquinone Q_BH^+ and the low redox potential of quinol-dianion Q_B^{2-}, respectively (see, for example, [8]). Applying the evident relationships between the rate constants $k_{-1} + m_{+1} \gg k_{-1}, m_{-1}$ and $k_{+2} + m_{-2} \gg k_{-2}, m_{+2}$ one can obtain the expressions for the stationary concentrations of the intermediate states:

$$B = \frac{k_{+1} A + m_{-1} D}{k_{-1} + m_{+1}}, \quad C = \frac{m_{+2} A + k_{-2} D}{k_{+2} + m_{-2}}.$$

(18)

Together with the normalizing Eq. 17, this leads to a significant simplification of the system (Eq. 16). The final system includes only two linear differential equations

$$\begin{align*}
\dot{D} &= c_{11} D + c_{12} E + c_1 \\
\dot{E} &= c_{21} D + c_{22} E + c_2
\end{align*}$$

(19)
with the linear coefficients being defined as follows:

\[c_{11} = -\frac{k_{11}m_1}{k_1 + m_1} + \frac{k_{12}m_2}{k_2 + m_2} \left(\frac{k_1 + m_1}{k_1 + m_1} \right) \]

\[c_{12} = k_{-2} = \frac{k_{11}m_1(k_{12} + m_2) + k_{12}m_2(k_{11} + m_1)}{(k_1 + m_1)(k_{12} + m_2) + k_{12}m_2(k_{11} + m_1)} \]

\[c_{1} = \frac{k_{11}m_1(k_{12} + m_2) + k_{12}m_2(k_{11} + m_1)}{(k_1 + m_1)(k_{12} + m_2) + k_{12}m_2(k_{11} + m_1)} \]

\[c_{21} = k_{-3} \]

\[c_{22} = k_{-3} \]

\[c_2 = 0. \]

The system (Eq. 19) has a two-exponential general solution:

\[D(t) = D_0 + D_1 \exp(-\lambda_1 t) + D_2 \exp(-\lambda_2 t) \]

\[E(t) = E_0 + E_1 \exp(-\lambda_1 t) + E_2 \exp(-\lambda_2 t) \] (20)

with the characteristic roots \(\lambda_1 \) and \(\lambda_2 \) defined by the equation

\[\lambda_{1,2} = -\frac{1}{2} \left(c_{11} + c_{22} \mp \sqrt{(c_{11}-c_{22})^2 + 4c_{12}c_{12}} \right) \].

A2. Kinetic model for Rb. sphaeroides chromatophores

At pH below 8.7 (\(M_1 > 1 \)), the reaction of the coupled second electron/first proton transfer is independent of the binding of the second proton. Consequently, the B2_{fast} and B2_{slow} components, that are observable at low temperatures [28], could be directly assigned to the two exponents of Eq. 20. The relative amplitudes of two components approximately matched each other [28] so we could define the average rate of the phase B2 as \(k = 0.5(\lambda_1 + \lambda_2) \).

At pH > 8.7 (\(M_1 < 1 \)), the driving force behind the whole process is the binding of a second proton to Q_B, followed by the fast dissociation of a ubiquinol from the site Q_B. Under these conditions, the electrogenic phase B2 is expected to be intrinsically mono-exponential, in line with experimental evidence [28]. Hence, the rate of the phase B2 could be written as \(k = \lambda_2 \).

The rate of the \(Q_A^-Q_B \rightarrow Q_AQ_BH_2 \) reaction in the whole pH interval could then be approximated by the equation:

\[k = \frac{\lambda_2 + 0.5(\lambda_1 + \lambda_2) \cdot M_1}{1 + M_1} \] (21)

A3. Kinetic model for the isolated RC

With RC preparations (Fig. 6 and Tables 3–5), where the pH dependence of the rate constant of the second electron transfer, \(k_{AB}^{(2)} \), but not of B2 were available, we used another mono-exponential approximation to model the \(Q_A^-Q_B \rightarrow Q_AQ_BH^- \) transition (cf. Eq. 21):

\[k = \frac{\lambda_2 + \lambda_1 \cdot M_1}{1 + M_1} \] (22)

In this case, the kinetics of electron transfer were approximated by the fast component at pH < 8.7 and by the slow component at pH > 8.7, respectively. We used this equation for the WT and mutant RCs, except the L213DN. In the latter case, the slow transfer of protons seems to control the reaction, and we approximated the kinetics of electron transfer by the slow component at all pH values. For simplicity, we neglected the lower kinetic path in Scheme III during the RC calculations, as evidence against involvement of this reaction route in the case of the isolated RC has been presented [60,67].
References

